Neuropathic conditions are complex and often possess a multifactorial aetiology that leads to disruption in the functioning of three types of nerves – autonomic, motor and sensory.
Among the different types of neuropathy that can affect an individual, peripheral neuropathy is perhaps the most extensively researched because of its effect on the mobility of an individual; diabetic peripheral neuropathy is considered as accounting for significant morbidity and mortality rates worldwide.
The biomechanical characteristics of diabetic peripheral neuropathy, especially its influence on the gait cycle, muscle activation and dynamic barefoot plantar pressure, were investigated in further detail by Fernando et al. by conducting a review of sixteen studies on the subject.
Based on the findings of the studies, the authors concluded that the biomechanical factors that seemed significantly different in patients with diabetic peripheral neuropathy were – elevated plantar pressure and longer stance time during gait.
Offer your Patients a Custom Calibrated Insole with a 98% Patient Satisfaction Rate know more
This implies that elevated plantar pressure levels, together with a longer period of time spent in stance, increase susceptibility to skin damage and ulceration in patients through prolonged mechanical load on tissue.
Ferreira et al. sought to study the effect of peripheral neuropathy on lower limb muscle strength by evaluating peak torques in the concentric, eccentric and isometric contractions of three groups of adult men during knee and ankle flexion and extension.
Of these men, 33 were non-diabetic controls, 31 had type 2 diabetes mellitus and 28 had diabetic peripheral neuropathy.
Using an isokinetic dynamometer, the authors determined that decrease in concentric and isometric peak torques occurred in patients with type 2 diabetes mellitus even before the onset of diabetic peripheral neuropathy for all the knee motions and almost all of the ankle motions.
Eccentric torque was observed to be preserved in all of the joint movements in both patients with type 2 diabetes mellitus and patients with diabetic peripheral neuropathy.
These two findings can have important implications in the development of preventative and treatment strategies for the diabetic population especially in terms of formulating successful early identification tools that could help promote improved stability and mobility in individuals with type 2 diabetes mellitus.
Highly customised orthotics can play an essential role in reducing high peak pressures on the plantar aspect of the neuropathic foot by evenly distributing forces from weightbearing and physical activities to decrease localised stress and the risk of ulceration.
Donovan J. Lott, of the Movement Science Programme at the Washington University, recorded tissue strain and plantar pressure data at the second metatarsal head for twenty subjects with diabetes mellitus, peripheral neuropathy and a history of plantar ulceration under four conditions – barefoot, shoe, shoe with total contact insert and shoe with total contact insert and metatarsal pad.
The results demonstrated a reduction in pressure and soft tissue strain at the second metatarsal head with the inclusion of footwear and orthotic devices during the simulated terminal stance of gait.
Custom foot orthotics help to improve ambulation by reducing hyperpronation and the stress on the muscles of the foot and leg. This allows the patient to remain active with walking and exercises, lessening the possibility of other diabetic complications such as heart diseases, kidney disease or a stroke.
While maximising the remaining functional integrity of the foot, MASS4D® customised foot orthotics also offer a special Bi-Lam cushion top cover for patients suffering from insensate foot symptoms; this provides protection against unnoticed blistering or ulcerations for this population, in addition to helping improve functionality in the lower limbs.
Copyright 2017 MASS4D® All rights reserved.
Offer your Patients a Custom Calibrated Insole with a 98% Patient Satisfaction Rate know more
The Importance of Optimal Plantar Pressure Displacement
Diabetic Foot Ulcers
Diabetic Foot Management
References:
Rehabilitation of Your Foot and Lower Back Conditions.
Long Lasting Wear
Strong Foot Support
Easy to use
Handmade MASS4D® Quality
FREE EXERCISES
Sign up for free recommended foot exercises, stretching, medical news and everything good for your feet
Please have a a look at our medical reviews and clinical articles on everything about lower biomechanics.
You should always seek the advice of a physician or other qualified healthcare provider with any questions regarding personal health or medical conditions.
The content, products and services offered herein, are here to educate consumers on healthcare and medical issues that may affect their daily lives. Nothing in the content, products or services should be considered, or used as a substitute for, medical advice, diagnosis or treatment. This site and its services do not constitute the practice of any medical, nursing or other professional healthcare advice, diagnosis or treatment.
The marks "MASS4D" and the MASS4D logo are trademarks. The content and design of MASS4D.com is protected by U.S. and international copyright laws. You may not copy, reproduce, republish, upload, post, display, transmit or frame any of these materials without prior written consent from MASS4D®.
Medical Disclaimer
The content, products or services on this site should not be considered or used as a substitute for medical advice, diagnosis or treatment and is not intended to provide individual medical advice. Included materials and conversations do not imply a personalised doctor-patient relationship.
Copyright and Intellectual property
MASS4D® is owned and operated by Scheibye General Trading LLC - Licence no: 853463
MASS4D® and Logo are registered trademarks of MASS4D Inc. All content, trademarks, artwork, and associated imagery are trademarks and/or copyright material of MASS4D® Inc.